Search results for " and Bioenergetics"

showing 3 items of 3 documents

Uptake of Acidic and Basic Sugar Derivatives in Lemna gibba G1

1989

The uptake of acidic and basic sugar derivatives in Lemna gibba L. was studied. Uronic acids applied to the experimental solution (50 millimolar) induced a small decrease of the membrane potential (10 +/- 1 millivolt galacturonic acid, and 20 +/- 4 millivolt glucuronic acid). After incubation of the plants in a 0.1 millimolar solution of these substrates, no decrease in the concentration of reducing groups in the external solution was detected. Respiration increased by 31% with 50 millimolar galacturonic acid, whereas no effect was found with the same concentration of glucuronic acid. Glucosamine caused a considerable concentration-dependent membrane depolarization. ((14)C)glucosamine uptak…

Molar concentrationChromatographybiologyPhysiologyChemistryLemna gibbaSubstrate (chemistry)Plant ScienceUronic acidCarbohydrateMembrane transportbiology.organism_classificationGlucuronic acidchemistry.chemical_compoundGlucosamineGeneticsMembranes and BioenergeticsPlant Physiology
researchProduct

Arabidopsis copper transport protein COPT2 participates in the crosstalk between iron deficiency responses and low phosphate signaling

2013

[EN] Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expr…

PhysiologyArabidopsisPlant SciencePlant RootsMembranes Transport and BioenergeticsGene Expression Regulation PlantArabidopsisThalianaHomeostasisArabidopsis thalianaSLC31 ProteinsGene-expressionCation Transport ProteinsChlorosisbiologyRevealsIron DeficienciesMetal homeostasisPlantsPlants Genetically ModifiedUp-RegulationTransport proteinPhenotypeBiochemistrySignal TransductionIronRecombinant Fusion ProteinsSaccharomyces cerevisiaechemistry.chemical_elementSaccharomyces cerevisiaeModels BiologicalPhosphatesEthyleneGeneticsmedicineBIOQUIMICA Y BIOLOGIA MOLECULARFamilyIron deficiency (plant disorder)Arabidopsis ProteinsBiological TransportRoot elongationSequence Analysis DNAbiology.organism_classificationmedicine.diseaseCopperPlant LeavesAcquisitionchemistrySeedlingsStarvationMutationCopper deficiencyCopper
researchProduct

Cercospora beticola Toxin Inhibits Vanadate-Sensitive H+ Transport in Corn Root Membrane Vesicles

1988

The effect of Cercospora beticola toxin on the transport of protons by vanadate-sensitive ATPase was studied with corn (Zea mays) root microsomal vesicles prepared by differential centrifugation, sedimentation through a sucrose cushion, and washing with Triton X-100 plus KBr. In these preparations, addition of ATP induced intravesicular H(+)-accumulation as evidenced by a rapid quenching of the fluorescence of 9-amino-6-chloro-2-methoxy acridine. This quenching was relatively unaffected by inhibitors of mitochondrial and tonoplast-type ATPases, but was strongly reduced by inhibitors of plasma membrane H(+)-ATPase. C. beticola toxin markedly inhibited ATP dependent H(+)-transport, and this e…

0106 biological sciencesPhysiology[SDV]Life Sciences [q-bio]ATPasePlant Sciencemedicine.disease_cause01 natural sciences03 medical and health sciencesGeneticsmedicineVanadateMembranes and BioenergeticsCERCOSPORA BETICULAComputingMilieux_MISCELLANEOUS030304 developmental biologyDifferential centrifugation0303 health sciencesQuenching (fluorescence)biologyToxinVesicleMembrane transportCercospora beticolabiology.organism_classification[SDV] Life Sciences [q-bio]Biochemistrybiology.protein010606 plant biology & botanyPlant Physiology
researchProduct